Representing and describing nanomaterials in predictive nanoinformatics

    0
    64


  • Fadeel, B. et al. Superior instruments for the security evaluation of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Winkler, D. A. Function of synthetic intelligence and machine studying in nanosafety. Small 16, 2001883 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cherkasov, A. et al. QSAR modeling: the place have you ever been? The place are you going to? J. Med. Chem. 57, 4977–5010 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Fourches, D. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano 4, 5703–5712 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Puzyn, T. et al. Utilizing nano-QSAR to foretell the cytotoxicity of metallic oxide nanoparticles. Nat. Nanotechnol. 6, 175–178 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Jeliazkova, N. et al. In direction of FAIR nanosafety information. Nat. Nanotechnol. 16, 644–654 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rybińska-Fryca, A., Mikolajczyk, A. & Puzyn, T. Construction–exercise prediction networks (SAPNets): a step past Nano-QSAR for efficient implementation of the safe-by-design idea. Nanoscale 12, 20669–20676 (2020).

    Article 

    Google Scholar
     

  • Marchese Robinson, R. L. et al. How ought to the completeness and high quality of curated nanomaterial information be evaluated? Nanoscale 8, 9919–9943 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Muratov, E. N. et al. QSAR with out borders. Chem. Soc. Rev. https://doi.org/10.1039/d0cs00098a (2020).

  • Stone, V. et al. A framework for grouping and read-across of nanomaterials- supporting innovation and danger evaluation. Nano Right now https://doi.org/10.3390/nano10102017 (2020).

  • Papadiamantis, A. G. et al. Predicting cytotoxicity of metallic oxide nanoparticles utilizing Isalos Analytics Platform. Nanomaterials 10, 2493 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Puzyn, T. et al. in Latest Advances in Qsar Research: Strategies and Functions Vol. 8 (eds. Puzyn, T. et al.) 127–176 (Springer, 2010).

  • Shoombuatong, W. et al. in Advances in QSAR Modeling (Ed. Roy, Okay.) 3–55 (Springer, 2017).

  • Karakus, C. O. & Winkler, D. A. Overcoming roadblocks in computational roadmaps to the long run for protected nanotechnology. Nano Futures 5, 22002 (2021).

    Article 

    Google Scholar
     

  • Haase, A. & Klaessig, F. (eds) EU US roadmap nanoinformatics 2030. Zenodo https://doi.org/10.5281/zenodo.1486012 (2018).

  • Mech, A. et al. Insights into potentialities for grouping and read-across for nanomaterials in EU chemical compounds laws. Nanotoxicology 13, 119–141 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Authorized and sensible challenges in classifying nanomaterials in response to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Regulation (EC) No 1907/2006 of the European Parliament and of the Council (EUR-Lex, 18 December 2006); https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10

  • Fee Regulation (EU) 2018/1881 (EUR-Lex, 3 December 2018); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1881

  • Subbotina, J. & Lobaskin, V. Multiscale modeling of bio-nano interactions of zero-valent silver nanoparticles. J. Phys. Chem. B 126, 1301–1314 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Kochev, N., Jeliazkova, N. & Tsakovska, I. in Points in Toxicology (eds. Neagu, D., Richarz, A.-N.) 69–107 (The Royal Society of Chemistry, 2020).

  • Fee Regulation (EU) 2018/1881 of three December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Analysis, Authorisation and Restriction of Chemical substances (REACH) as regards Annexes I, III,VI, V (European Fee, 2018).

  • Steerage on Data Necessities and Chemical Security Evaluation: Appendix R.6-1 for Nanomaterials Relevant to the Steerage on QSARs and Grouping of Chemical substances Model 2.0, 3 (ECHA, 2019); https://doi.org/10.2823/273911

  • Burello, E. Overview of (Q)SAR fashions for regulatory evaluation of nanomaterials dangers. NanoImpact 8, 48–58 (2017).

    Article 

    Google Scholar
     

  • Lynch, I., Weiss, C. & Valsami-Jones, E. A method for grouping of nanomaterials primarily based on key physico-chemical descriptors as a foundation for safer-by-design NMs. Nano Right now 9, 266–270 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Lynch, I., Afantitis, A., Leonis, G., Melagraki, G. & Valsami-Jones, E. in Advances in QSAR modeling. Challenges and Advances in Computational Chemistry and Physics Vol. 24 (Ed. Roy, Okay.) 385–424 (Springer, 2017).

  • Lynch, I. & Lee, R. G. in Innovation, Expertise, and Information Administration (eds. Murphy, F. et al.) 145–169 (Springer, 2016).

  • Mülhopt, S. et al. Characterization of nanoparticle batch-to-batch variability. Nanomaterials 8, 311 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. Excessive-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kluender, E. J. et al. Catalyst discovery by megalibraries of nanomaterials. Proc. Natl Acad. Sci. USA 116, 40–45 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Poisonous Substances Management Act (US EPA,1979): https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act

  • TSCA Stock Standing of Nanoscale Substances – Common Method (US EPA, 2008); https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under

  • Nano-InChI working group; https://www.inchi-trust.org/nanomaterials/

  • Lynch, I. et al. Can an InChI for nano tackle the necessity for a simplified illustration of complicated nanomaterials throughout experimental and nanoinformatics research? Nanomaterials 10, (2020).

  • Toropova, A. P. & Toropov, A. A. Nanomaterials: Quasi-SMILES as a versatile foundation for regulation and environmental danger evaluation. Sci. Whole Environ. 823, 153747 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Toropov, A. A., Sizochenko, N., Toropova, A. P. & Leszczynski, J. In direction of the event of world nano-quantitative structure-property relationship fashions: zeta potentials of metallic oxide nanoparticles. Nanomaterials 8, 243 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mikolajczyk, A. et al. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts. Environ. Sci. Nano 5, 1150–1160 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Mikolajczyk, A. et al. A chemoinformatics strategy for the characterization of hybrid nanomaterials: safer and environment friendly design perspective. Nanoscale 11, 11808–11818 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Roy, J., Ojha, P. Okay. & Roy, Okay. Danger evaluation of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR strategy utilizing easy periodic desk primarily based descriptors. Nanotoxicology 13, 701–716 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Svendsen, C. et al. Key rules and operational practices for improved nanotechnology environmental publicity evaluation. Nat. Nanotechnol. 15, 731–742 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Amos, J. D. et al. The NanoInformatics Information Commons: capturing spatial and temporal nanomaterial transformations in various techniques. NanoImpact 23, 100331 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Di Cristo, L. et al. Grouping hypotheses and an built-in strategy to testing and evaluation of nanomaterials following oral ingestion. Nanomaterials 11, 2623 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Afantitis, A., Melagraki, G., Tsoumanis, A., Valsami-Jones, E. & Lynch, I. A nanoinformatics resolution assist software for the digital screening of gold nanoparticle mobile affiliation utilizing protein corona fingerprints. Nanotoxicology 12, 1148–1165 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wyrzykowska, E., Mikolajczyk, A., Sikorska, C. & Puzyn, T. Growth of a novel in silico mannequin of zeta potential for metallic oxide nanoparticles: a nano-QSPR strategy. Nanotechnology 27, 1–8 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mikolajczyk, A. et al. Zeta potential for metallic oxide nanoparticles: a predictive mannequin developed by a nano-quantitative structure-property relationship strategy. Chem. Mater. 27, 2400–2407 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Grzelczak, M., Liz-Marzan, L. M. & Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 48, 1342–1361 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y., Zhu, S., Gu, Z., Chen, C. & Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 69, 31–48 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Baer, D. R., Munusamy, P. & Thrall, B. D. Provenance info as a software for addressing engineered nanoparticle reproducibility challenges. Biointerphases 11, 04B401 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mancardi, G. et al. Multi-scale modelling of aggregation of TiO2 nanoparticle suspensions in water. Nanomaterials 12, 217 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Alsharif, S. A., Energy, D., Rouse, I. & Lobaskin, V. In silico prediction of protein adsorption power on titanium dioxide and gold nanoparticles. Nanomaterials 10, 1967 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Rouse, I. et al. First rules characterisation of bio–nano interface. Phys. Chem. Chem. Phys. 23, 13473–13482 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rouse, I. & Lobaskin, V. A tough-sphere mannequin of protein corona formation on spherical and cylindrical nanoparticles. Biophys. J. 120, 4457–4471 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Buzea, C., Pacheco, I. I. & Robbie, Okay. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).

    Article 

    Google Scholar
     

  • Rabanel, J.-M. et al. Nanoparticle heterogeneity: an rising structural parameter influencing particle destiny in organic media? Nanoscale 11, 383–406 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Adjei, I. M., Peetla, C. & Labhasetwar, V. Heterogeneity in nanoparticles influences biodistribution and concentrating on. Nanomedicine 9, 267–278 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Appendix for Nanoforms Relevant to the Steerage on Registration and Substance Identification (ECHA, 2019); https://doi.org/10.2823/832485

  • Caputo, F., Clogston, J., Calzolai, L., Rösslein, M. & Prina-Mello, A. Measuring particle dimension distribution of nanoparticle enabled medicinal merchandise, the joint view of EUNCL and NCI-NCL. A step-by-step strategy combining orthogonal measurements with growing complexity. J. Management. Launch 299, 31–43 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lundqvist, M. et al. The evolution of the protein corona round nanoparticles: A check research. ACS Nano 5, 7503–7509 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona decided utilizing a quantitative metabolomics strategy: a pilot research. Small 16, 2000295 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yan, X. et al. In silico profiling nanoparticles: predictive nanomodeling utilizing common nanodescriptors and varied machine studying approaches. Nanoscale 11, 8352–8362 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Building of a web-based nanomaterial database by massive information curation and modeling pleasant nanostructure annotations. Nat. Commun. 11, 1–10 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sizochenko, N. et al. From fundamental physics to mechanisms of toxicity: the ‘liquid drop’ strategy utilized to develop predictive classification fashions for toxicity of metallic oxide nanoparticles. Nanoscale 6, 13986–13993 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Sizochenko, N., Jagiello, Okay., Leszczynski, J. & Puzyn, T. How the ‘liquid drop’ strategy could possibly be effectively utilized for quantitative structure-property relationship modeling of nanofluids. J. Phys. Chem. C 119, 25542–25547 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Utembe, W., Potgieter, Okay., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: Essential parameters wanted for danger evaluation of nanomaterials. Half. Fibre Toxicol. 12, 11 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lin, S. et al. Zebrafish high-throughput screening to review the affect of dissolvable metallic oxide nanoparticles on the hatching enzyme, ZHE1. Small 9, 1776–1785 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Kokot, H. et al. Prediction of continual irritation for inhaled particles: the affect of fabric biking and quarantining within the lung epithelium. Adv. Mater. 32, 2003913 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ellis, L.-J. A. & Lynch, I. Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from evaluation of the composition of the acquired protein corona. Environ. Sci. Nano 7, 3343–3359 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Uhlen, M. et al. In direction of a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Wheeler, Okay. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Smythers, A. L. & Hicks, L. M. Mapping the plant proteome: instruments for surveying coordinating pathways. Emerg. High. Life Sci. 5, 203–220 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jagiello, Okay. et al. Transcriptomics-based and AOP-informed structure-activity relationships to foretell pulmonary pathology induced by multiwalled carbon nanotubes. Small 17, 2003465 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Myden, A., Hill, E. & Fowkes, A. Utilizing adversarial end result pathways to contextualise (Q)SAR predictions for reproductive toxicity – a case research with aromatase inhibition. Reprod. Toxicol. 108, 43–55 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ellison, C. M., Piechota, P., Madden, J. C., Enoch, S. J. & Cronin, M. T. D. Opposed end result pathway (AOP) knowledgeable modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of motion. Environ. Sci. Technol. 50, 3995–4007 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Search engine marketing, M., Chae, C. H., Lee, Y., Kim, H. R. & Kim, J. Novel QSAR fashions for molecular initiating occasion modeling in two intersecting adversarial end result pathways primarily based pulmonary fibrosis prediction for biocidal mixtures. Toxics 9, 59 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Halappanavar, S. et al. Opposed end result pathways as a software for the design of testing methods to assist the security evaluation of rising superior supplies on the nanoscale. Half. Fibre Toxicol. 17, 16 (2020).

    Article 

    Google Scholar
     

  • Toropova, A. P., Toropov, A. A. & Benfenati, E. QSPR as a random occasion: solubility of fullerenes C[60] and C[70]. Fuller. Nanotub. Carbon Nanostruct. 27, 816–821 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Toropov, A. A. & Toropova, A. P. Quasi-SMILES and nano-QFAR: united mannequin for mutagenicity of fullerene and MWCNT underneath completely different circumstances. Chemosphere 139, 18–22 (2015).

    CAS 
    Article 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here