Burger, T., Sempere, C., Roy-Layinde, B. & Lenert, A. Current efficiencies and future alternatives in thermophotovoltaics. Joule 4, 1660–1680 (2020).
LaPotin, A. et al. Thermophotovoltaic effectivity of 40%. Nature 604, 287–291 (2022).
Bitnar, S. et al. Sensible thermophotovoltaic turbines. Semiconductors 38, 941–945 (2004).
Nakagawa, N., Ohtsubo, H., Waku, Y. & Yugami, H. Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. J. Eur. Ceram. Soc. 25, 1285–1291 (2005).
Ferguson, L. G. & Dogan, F. A extremely environment friendly NiO-doped MgO matched emitter for thermophotovoltaic power conversion. Mater. Sci. Eng. B 83, 35–41 (2001).
Fraas, L. M., Avery, J. E. & Huang, H. X. Thermophotovoltaic furnace–generator for the house utilizing low bandgap GaSb cells. Semicond. Sci. Technol. 18, S247–S253 (2003).
Chirumamilla, M. et al. Metamaterial emitter for thermophotovoltaics secure as much as 1400 °C. Sci. Rep. 9, 7241 (2019).
Chirumamilla, M. et al. Thermal stability of tungsten based mostly metamaterial emitter underneath medium vacuum and inert fuel situations. Sci. Rep. 10, 3605 (2020).
Wang, Y. et al. Hybrid photo voltaic absorber–emitter by coherence‐enhanced absorption for improved photo voltaic thermophotovoltaic conversion. Adv. Choose. Mater. 6, 1800813 (2018).
Kim, J. H., Jung, S. M. & Shin, M. W. Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter underneath excessive vacuum situation. Choose. Specific 27, 3039–3054 (2019).
Shimizu, M., Kohiyama, A. & Yugami, H. Analysis of thermal stability in spectrally selective few-layer metallo-dielectric constructions for photo voltaic thermophotovoltaics. J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).
Stelmakh, V. et al. Excessive-temperature tantalum tungsten alloy photonic crystals: stability, optical properties, and fabrication. Appl. Phys. Lett. 103, 123903 (2013).
Woolf, D. N. et al. Excessive-efficiency thermophotovoltaic power conversion enabled by a metamaterial selective emitter. Optica 5, 213–218 (2018).
Rinnerbauer, V. et al. Excessive-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Choose. Specific 21, 11482–11491 (2013).
Cui, Okay. et al. Tungsten–carbon nanotube composite photonic crystals as thermally secure spectral‐selective absorbers and emitters for thermophotovoltaics. Adv. Power Mater. 8, 1801471 (2018).
Yeng, Y. X. et al. Enabling high-temperature nanophotonics for power purposes. Proc. Natl Acad. Sci. USA 109, 2280–2285 (2012).
Cho, J.-W. et al. Optical tunneling mediated sub-skin-depth excessive emissivity tungsten radiators. Nano Lett. 19, 7093–7099 (2019).
Chan, W. R. et al. Enabling environment friendly heat-to-electricity technology on the mesoscale. Power Environ. Sci. 10, 1367–1371 (2017).
Li, P. et al. Massive-scale nanophotonic photo voltaic selective absorbers for high-efficiency photo voltaic thermal power conversion. Adv. Mater. 27, 4585–4591 (2015).
Arpin, Okay. A. et al. Three-dimensional self-assembled photonic crystals with excessive temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).
Arpin, Okay. A., Losego, M. D. & Braun, P. V. Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability. Chem. Mater. 23, 4783–4788 (2011).
Kim, Y., Kim, M.-J., Kim, Y.-S., Lee, H. & Lee, S.-M. Nanostructured radiation emitters: design guidelines for high-performance thermophotovoltaic methods. ACS Photon. 6, 2260–2267 (2019).
Chou, J. B. et al. Enabling perfect selective photo voltaic absorption with 2D metallic dielectric photonic crystals. Adv. Mater. 26, 8041–8045 (2014).
Peykov, D., Yeng, Y. X., Celanovic, I., Joannopoulos, J. D. & Schuh, C. A. Results of floor diffusion on excessive temperature selective emitters. Choose. Specific 23, 9979–9993 (2015).
Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials through topological transitions. Nat. Commun. 7, 11809 (2016).
Lee, H.-J. et al. Hafnia-plugged microcavities for thermal stability of selective emitters. Appl. Phys. Lett. 102, 241904 (2013).
Han, S., Shin, J.-H., Jung, P.-H., Lee, H. & Lee, B. J. Broadband photo voltaic thermal absorber based mostly on optical metamaterials for high-temperature purposes. Adv. Choose. Mater. 4, 1265–1273 (2016).
Wells, M. P. et al. Temperature stability of skinny movie refractory plasmonic supplies. Choose. Specific 26, 15726–15744 (2018).
Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).
Berquist, Z. J., Gayle, A. J., Dasgupta, N. P. & Lenert, A. Clear refractory aerogels for environment friendly spectral management in excessive‐temperature solar energy technology. Adv. Funct. Mater. 32, 2108774 (2021).
Fan, D. et al. Close to-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature 586, 237–241 (2020).
Omair, Z. et al. Ultraefficient thermophotovoltaic energy conversion by band-edge spectral filtering. Proc. Natl Acad. Sci. USA 116, 15356–15361 (2019).
Jain, A. et al. Commentary: The Supplies Venture: a supplies genome method to accelerating supplies innovation. APL Mater. 1, 011002 (2013).
Sasamoto, T., Mizushima, Okay. & Sata, T. Transpiration examine of the response of water vapor with barium oxide. Bull. Chem. Soc. Jpn 52, 2127–2129 (1979).
Meschter, P. J., Opila, E. J. & Jacobson, N. S. Water vapor-mediated volatilization of high-temperature supplies. Annu. Rev. Mater. Res. 43, 559–588 (2013).
Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263–264 (2014).
Maekawa, T., Kurosaki, Okay. & Yamanaka, S. Thermal and mechanical properties of perovskite-type barium hafnate. J. Alloys Compd. 407, 44–48 (2006).
Yamanaka, S. et al. Thermophysical properties of BaZrO3 and BaCeO3. J. Alloys Compd. 359, 109–113 (2003).
Durand, M. A. The coefficient of thermal enlargement of magnesium oxide. Physics 7, 297–298 (1936).
Wang, X. et al. Calculation of thermal enlargement coefficient of uncommon earth zirconate system at excessive temperature by first rules. Supplies 15, 2264 (2022).
Ding, H. et al. Computational method for epitaxial polymorph stabilization via substrate choice. ACS Appl. Mater. Interfaces 8, 13086–13093 (2016).
Wang, X., Lee, E., Xu, C. & Liu, J. Excessive-efficiency, air-stable manganese–iron oxide nanoparticle-pigmented photo voltaic selective absorber coatings towards concentrating solar energy methods working at 750 °C. Mater. Right this moment Power 19, 100609 (2021).
Wang, H. et al. Extremely environment friendly selective metamaterial absorber for high-temperature photo voltaic thermal power harvesting. Sol. Power Mater. Sol. Cells 137, 235–242 (2015).
Zou, C., Xie, W. & Shao, L. Practical multi-layer photo voltaic spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for prime temperature purposes. Sol. Power Mater. Sol. Cells 153, 9–17 (2016).
Xu, J., Mandal, J. & Raman, A. P. Broadband directional management of thermal emission. Science 372, 393–397 (2021).
Mehboob, G. et al. A evaluate on failure mechanism of thermal barrier coatings and techniques to increase their lifetime. Ceram. Int. 46, 8497–8521 (2020).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based mostly on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a aircraft–wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014).
Chirumamilla, M. et al. Massive-area ultrabroadband absorber for photo voltaic thermophotovoltaics based mostly on 3D titanium nitride nanopillars. Adv. Choose. Mater. 5, 1700552 (2017).