Nanophotonic management of thermal emission underneath excessive temperatures in air

    0
    62


  • Burger, T., Sempere, C., Roy-Layinde, B. & Lenert, A. Current efficiencies and future alternatives in thermophotovoltaics. Joule 4, 1660–1680 (2020).

  • LaPotin, A. et al. Thermophotovoltaic effectivity of 40%. Nature 604, 287–291 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Bitnar, S. et al. Sensible thermophotovoltaic turbines. Semiconductors 38, 941–945 (2004).

  • Nakagawa, N., Ohtsubo, H., Waku, Y. & Yugami, H. Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. J. Eur. Ceram. Soc. 25, 1285–1291 (2005).

  • Ferguson, L. G. & Dogan, F. A extremely environment friendly NiO-doped MgO matched emitter for thermophotovoltaic power conversion. Mater. Sci. Eng. B 83, 35–41 (2001).

  • Fraas, L. M., Avery, J. E. & Huang, H. X. Thermophotovoltaic furnace–generator for the house utilizing low bandgap GaSb cells. Semicond. Sci. Technol. 18, S247–S253 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Chirumamilla, M. et al. Metamaterial emitter for thermophotovoltaics secure as much as 1400 °C. Sci. Rep. 9, 7241 (2019).

    Article 

    Google Scholar
     

  • Chirumamilla, M. et al. Thermal stability of tungsten based mostly metamaterial emitter underneath medium vacuum and inert fuel situations. Sci. Rep. 10, 3605 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Hybrid photo voltaic absorber–emitter by coherence‐enhanced absorption for improved photo voltaic thermophotovoltaic conversion. Adv. Choose. Mater. 6, 1800813 (2018).

  • Kim, J. H., Jung, S. M. & Shin, M. W. Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter underneath excessive vacuum situation. Choose. Specific 27, 3039–3054 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Shimizu, M., Kohiyama, A. & Yugami, H. Analysis of thermal stability in spectrally selective few-layer metallo-dielectric constructions for photo voltaic thermophotovoltaics. J. Quant. Spectrosc. Radiat. Transf. 212, 45–49 (2018).

  • Stelmakh, V. et al. Excessive-temperature tantalum tungsten alloy photonic crystals: stability, optical properties, and fabrication. Appl. Phys. Lett. 103, 123903 (2013).

  • Woolf, D. N. et al. Excessive-efficiency thermophotovoltaic power conversion enabled by a metamaterial selective emitter. Optica 5, 213–218 (2018).

  • Rinnerbauer, V. et al. Excessive-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Choose. Specific 21, 11482–11491 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Cui, Okay. et al. Tungsten–carbon nanotube composite photonic crystals as thermally secure spectral‐selective absorbers and emitters for thermophotovoltaics. Adv. Power Mater. 8, 1801471 (2018).

    Article 

    Google Scholar
     

  • Yeng, Y. X. et al. Enabling high-temperature nanophotonics for power purposes. Proc. Natl Acad. Sci. USA 109, 2280–2285 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Cho, J.-W. et al. Optical tunneling mediated sub-skin-depth excessive emissivity tungsten radiators. Nano Lett. 19, 7093–7099 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chan, W. R. et al. Enabling environment friendly heat-to-electricity technology on the mesoscale. Power Environ. Sci. 10, 1367–1371 (2017).

  • Li, P. et al. Massive-scale nanophotonic photo voltaic selective absorbers for high-efficiency photo voltaic thermal power conversion. Adv. Mater. 27, 4585–4591 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Arpin, Okay. A. et al. Three-dimensional self-assembled photonic crystals with excessive temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).

    Article 

    Google Scholar
     

  • Arpin, Okay. A., Losego, M. D. & Braun, P. V. Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability. Chem. Mater. 23, 4783–4788 (2011).

  • Kim, Y., Kim, M.-J., Kim, Y.-S., Lee, H. & Lee, S.-M. Nanostructured radiation emitters: design guidelines for high-performance thermophotovoltaic methods. ACS Photon. 6, 2260–2267 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chou, J. B. et al. Enabling perfect selective photo voltaic absorption with 2D metallic dielectric photonic crystals. Adv. Mater. 26, 8041–8045 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Peykov, D., Yeng, Y. X., Celanovic, I., Joannopoulos, J. D. & Schuh, C. A. Results of floor diffusion on excessive temperature selective emitters. Choose. Specific 23, 9979–9993 (2015).

    Article 

    Google Scholar
     

  • Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials through topological transitions. Nat. Commun. 7, 11809 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lee, H.-J. et al. Hafnia-plugged microcavities for thermal stability of selective emitters. Appl. Phys. Lett. 102, 241904 (2013).

    Article 

    Google Scholar
     

  • Han, S., Shin, J.-H., Jung, P.-H., Lee, H. & Lee, B. J. Broadband photo voltaic thermal absorber based mostly on optical metamaterials for high-temperature purposes. Adv. Choose. Mater. 4, 1265–1273 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wells, M. P. et al. Temperature stability of skinny movie refractory plasmonic supplies. Choose. Specific 26, 15726–15744 (2018).

    Article 

    Google Scholar
     

  • Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Berquist, Z. J., Gayle, A. J., Dasgupta, N. P. & Lenert, A. Clear refractory aerogels for environment friendly spectral management in excessive‐temperature solar energy technology. Adv. Funct. Mater. 32, 2108774 (2021).

  • Fan, D. et al. Close to-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature 586, 237–241 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Omair, Z. et al. Ultraefficient thermophotovoltaic energy conversion by band-edge spectral filtering. Proc. Natl Acad. Sci. USA 116, 15356–15361 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Jain, A. et al. Commentary: The Supplies Venture: a supplies genome method to accelerating supplies innovation. APL Mater. 1, 011002 (2013).

  • Sasamoto, T., Mizushima, Okay. & Sata, T. Transpiration examine of the response of water vapor with barium oxide. Bull. Chem. Soc. Jpn 52, 2127–2129 (1979).

    CAS 
    Article 

    Google Scholar
     

  • Meschter, P. J., Opila, E. J. & Jacobson, N. S. Water vapor-mediated volatilization of high-temperature supplies. Annu. Rev. Mater. Res. 43, 559–588 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Guler, U., Boltasseva, A. & Shalaev, V. M. Refractory plasmonics. Science 344, 263–264 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Maekawa, T., Kurosaki, Okay. & Yamanaka, S. Thermal and mechanical properties of perovskite-type barium hafnate. J. Alloys Compd. 407, 44–48 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Yamanaka, S. et al. Thermophysical properties of BaZrO3 and BaCeO3. J. Alloys Compd. 359, 109–113 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Durand, M. A. The coefficient of thermal enlargement of magnesium oxide. Physics 7, 297–298 (1936).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. et al. Calculation of thermal enlargement coefficient of uncommon earth zirconate system at excessive temperature by first rules. Supplies 15, 2264 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ding, H. et al. Computational method for epitaxial polymorph stabilization via substrate choice. ACS Appl. Mater. Interfaces 8, 13086–13093 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X., Lee, E., Xu, C. & Liu, J. Excessive-efficiency, air-stable manganese–iron oxide nanoparticle-pigmented photo voltaic selective absorber coatings towards concentrating solar energy methods working at 750 °C. Mater. Right this moment Power 19, 100609 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H. et al. Extremely environment friendly selective metamaterial absorber for high-temperature photo voltaic thermal power harvesting. Sol. Power Mater. Sol. Cells 137, 235–242 (2015).

    Article 

    Google Scholar
     

  • Zou, C., Xie, W. & Shao, L. Practical multi-layer photo voltaic spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for prime temperature purposes. Sol. Power Mater. Sol. Cells 153, 9–17 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Xu, J., Mandal, J. & Raman, A. P. Broadband directional management of thermal emission. Science 372, 393–397 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mehboob, G. et al. A evaluate on failure mechanism of thermal barrier coatings and techniques to increase their lifetime. Ceram. Int. 46, 8497–8521 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based mostly on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a aircraft–wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Chirumamilla, M. et al. Massive-area ultrabroadband absorber for photo voltaic thermophotovoltaics based mostly on 3D titanium nitride nanopillars. Adv. Choose. Mater. 5, 1700552 (2017).

    Article 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here