Drago F, Ciccarese G, Gasparini G, et al. Up to date infectious exanthems: an replace. Future Microbiol. 2017;12:171–93. https://doi.org/10.2217/fmb-2016-0147.
Marshall JS, Warrington R, Watson W, et al. An introduction to immunology and immunopathology. Allergy Bronchial asthma Clin Immunol. 2018;14:49. https://doi.org/10.1186/s13223-018-0278-1.
Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining skilled immunity and its function in well being and illness. Nat Rev Immunol. 2020;20:375–88. https://doi.org/10.1038/s41577-020-0285-6.
Amarante-Mendes GP, Adjemian S, Branco LM, et al. Sample recognition receptors and the host cell loss of life molecular equipment. Entrance Immunol. 2018;9:2379. https://doi.org/10.3389/fimmu.2018.02379.
Vijay Ok. Toll-like receptors in immunity and inflammatory ailments: previous, current, and future. Int Immunopharmacol. 2018;59:391–412. https://doi.org/10.1016/j.intimp.2018.03.002.
Bedard Ok, Krause KH. The NOX household of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313. https://doi.org/10.1152/physrev.00044.2005.
Smith NC, Rise ML, Christian SL. A comparability of the innate and adaptive immune techniques in cartilaginous fish, ray-finned fish, and lobe-finned fish. Entrance Immunol. 2019;10:2292. https://doi.org/10.3389/fimmu.2019.02292.
Brady J, Horie S, Laffey JG. Position of the adaptive immune response in sepsis. Intensive Care Med Exp. 2020;8:20. https://doi.org/10.1186/s40635-020-00309-z.
Kulkarni OP, Lichtnekert J, Anders HJ, et al. The immune system in tissue environments regaining homeostasis after harm: is “irritation” at all times irritation? Mediators Inflamm. 2016;2016:2856213. https://doi.org/10.1155/2016/2856213.
Ding R, Meng Y, Ma X. The central function of the inflammatory response in understanding the heterogeneity of sepsis-3. Biomed Res Int. 2018;2018:5086516. https://doi.org/10.1155/2018/5086516.
Venet F, Monneret G. Advances within the understanding and remedy of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14:121–37. https://doi.org/10.1038/nrneph.2017.165.
Yang L, Xie X, Tu Z, et al. The sign pathways and remedy of cytokine storm in COVID-19. Sign Transduct Goal Ther. 2021;6:255. https://doi.org/10.1038/s41392-021-00679-0.
Cheng Z, Abrams ST, Toh J, et al. The crucial roles and mechanisms of immune cell loss of life in sepsis. Entrance Immunol. 2020;1918:11. https://doi.org/10.3389/fimmu.2020.01918.
Luan Y, Yao Y, Xiao X, et al. Insights into the apoptotic loss of life of immune cells in sepsis. J Interferon Cytokine Res. 2015;35:17–22. https://doi.org/10.1089/jir.2014.0069.
Chung CS, Wang W, Chaudry IH, et al. Elevated apoptosis in lamina propria B cells throughout polymicrobial sepsis is FasL however not endotoxin mediated. Am J Physiol Gastrointest Liver Physiol. 2001;280:G812–8.
Hotchkiss RS, Swanson PE, Knudson CM, et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol. 1999;162(7):4148–56.
Reinhart Ok, Daniels R, Kissoon N, et al. Recognizing sepsis as a world well being precedence—a WHO decision. N Engl J Med. 2017;377:414–7. https://doi.org/10.1056/NEJMp1707170.
Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: outcomes from an up to date and expanded systematic evaluation and meta-analysis. Intensive Care Med. 2020;46:1552–62. https://doi.org/10.1007/s00134-020-06151-x.
Carvalho IT, Santos L. Antibiotics within the aquatic environments: a evaluation of the European state of affairs. Environ Int. 2016;94:736–57. https://doi.org/10.1016/j.envint.2016.06.025.
Gothwal R, Shashidhar T. Antibiotic air pollution within the surroundings: a evaluation. Clear: Soil, Air, Water. 2015;43:479–89. https://doi.org/10.1002/clen.201300989.
Vargas AJ, Harris CC. Biomarker improvement within the precision medication period: lung most cancers as a case research. Nat Rev Most cancers. 2016;16:525. https://doi.org/10.1038/nrc.2016.56.
Hsu J. How covid-19 is accelerating the specter of antimicrobial resistance. BMJ. 2020;369: m1983. https://doi.org/10.1136/bmj.m1983.
Tagliabue A, Rappuoli R. Altering priorities in vaccinology: antibiotic resistance shifting to the highest. Entrance Immunol. 2018;9:1068. https://doi.org/10.3389/fimmu.2018.01068.
Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in micro organism: mechanisms, evolution, and persistence. J Mol Evol. 2020;88:26–40. https://doi.org/10.1007/s00239-019-09914-3.
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33. https://doi.org/10.1128/mmbr.00016-10.
Sabtu N, Enoch DA, Brown NM. Antibiotic resistance: what, why, the place, when and the way? Br Med Bull. 2015;116:105–13. https://doi.org/10.1093/bmb/ldv041.
Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/element/antimicrobial-resistance. Accessed on 2 Feb 2022
Singh L, Kruger HG, Maguire GEM, et al. The function of nanotechnology within the remedy of viral infections. Ther Adv Infect Dis. 2017;4:105–31. https://doi.org/10.1177/2049936117713593.
Jayawardena R, Sooriyaarachchi P, Chourdakis M, et al. Enhancing immunity in viral infections, with particular emphasis on COVID-19: A evaluation. Diabetes Metab Syndr. 2020;14:367–82. https://doi.org/10.1016/j.dsx.2020.04.015.
Wang L, Ren Z, Ma L, et al. Progress in analysis on SARS-CoV-2 an infection inflicting neurological ailments and its an infection mechanism. Entrance Neurol. 2020;11: 592888. https://doi.org/10.3389/fneur.2020.592888.
Munguia J, Nizet V. Pharmacological focusing on of the host-pathogen interplay: alternate options to classical antibiotics to fight drug-resistant superbugs. Developments Pharmacol Sci. 2017;38:473–88. https://doi.org/10.1016/j.ideas.2017.02.003.
Dobosz P, Dzieciątkowski T. The intriguing historical past of most cancers immunotherapy. Entrance Immunol. 2019;10:2965. https://doi.org/10.3389/fimmu.2019.02965.
Chen R, Manochakian R, James L, et al. Rising therapeutic brokers for superior non-small cell lung most cancers. J Hematol Oncol. 2020;13:58. https://doi.org/10.1186/s13045-020-00881-7.
Kooshkaki O, Derakhshani A, Hosseinkhani N, et al. Mixture of ipilimumab and nivolumab in cancers: from scientific apply to ongoing scientific trials. Int J Mol Sci. 2020;21(12): 4427. https://doi.org/10.3390/ijms21124427.
Patel MC, Shirey KA, Pletneva LM, et al. Novel medicine focusing on Toll-like receptors for antiviral remedy. Future Virol. 2014;9:811–29. https://doi.org/10.2217/fvl.14.70.
Chen L, Yu J. Modulation of Toll-like receptor signaling in innate immunity by pure merchandise. Int Immunopharmacol. 2016;37:65–70. https://doi.org/10.1016/j.intimp.2016.02.005.
Zheng D, Liwinski T, Elinav E. Interplay between microbiota and immunity in well being and illness. Cell Res. 2020;30:492–506. https://doi.org/10.1038/s41422-020-0332-7.
Paludan SR, Pradeu T, Masters SL, et al. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol. 2021;21:137–50. https://doi.org/10.1038/s41577-020-0391-5.
Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug supply functions. Environ Chem Lett. 2019;17:849–65. https://doi.org/10.1007/s10311-018-00841-1.
Duthie MS, Windish HP, Fox CB, et al. Use of outlined TLR ligands as adjuvants inside human vaccines. Immunol Rev. 2011;239:178–96. https://doi.org/10.1111/j.1600-065X.2010.00978.x.
Wang H, Wei Y, Zeng Y, et al. The affiliation of polymorphisms of TLR4 and CD14genes with susceptibility to sepsis in a Chinese language inhabitants. BMC Med Genet. 2014;15:123. https://doi.org/10.1186/s12881-014-0123-4.
Plantinga TS, Johnson MD, Scott WK, et al. Toll-like receptor 1 polymorphisms enhance susceptibility to candidemia. J Infect Dis. 2012;205:934–43. https://doi.org/10.1093/infdis/jir867.
Hawn TR, Verbon A, Janer M, et al. Toll-like receptor 4 polymorphisms are related to resistance to Legionnaires’ illness. Proc Natl Acad Sci USA. 2005;102:2487. https://doi.org/10.1073/pnas.0409831102.
Kawai T, Akira S. The function of pattern-recognition receptors in innate immunity: replace on Toll-like receptors. Nat Immunol. 2010;11:373–84. https://doi.org/10.1038/ni.1863.
Hancock REW, Nijnik A, Philpott DJ. Modulating immunity as a remedy for bacterial infections. Nat Rev Microbiol. 2012;10:243–54. https://doi.org/10.1038/nrmicro2745.
Gao W, Xiong Y, Li Q, et al. Inhibition of toll-like receptor signaling as a promising remedy for inflammatory ailments: a journey from molecular to nano therapeutics. Entrance Physiol. 2017;8:508. https://doi.org/10.3389/fphys.2017.00508.
Jareoncharsri P, Bunnag C Fau – Tunsuriyawong P, Tunsuriyawong P, Assanasane P, et al. An open-label, potential research of an oral polyvalent bacterial lysate (Luivac) within the remedy of recurrent respiratory tract infections in Thai sufferers. Asian Pac J Allergy Immunol. 2003;21(4):223–30.
Simpson ME, Petri WA Jr. TLR2 as a therapeutic goal in bacterial an infection. Developments Mol Med. 2020;26:715–7. https://doi.org/10.1016/j.molmed.2020.05.006.
Bergt S, Wagner N-M, Heidrich M, et al. Hydrocortisone reduces the helpful results of toll-like receptor 2 deficiency on survival in a mouse mannequin of polymicrobial sepsis. Shock. 2013;40(5):414–9. https://doi.org/10.1097/SHK.0000000000000029.
Lima CX, Souza DG, Amaral FA, et al. Therapeutic results of remedy with anti-TLR2 and anti-TLR4 monoclonal antibodies in polymicrobial sepsis. PLoS ONE. 2015;10: e0132336. https://doi.org/10.1371/journal.pone.0132336.
Mazgaeen L, Gurung P. Latest Advances in Lipopolysaccharide Recognition Methods. Int J Mol Sci 2020, 21. doi: https://doi.org/10.3390/ijms21020379.
Wang Y, Su L, Morin MD, et al. TLR4/MD-2 activation by an artificial agonist with no similarity to LPS. Proc Natl Acad Sci U S A. 2016;113:E884-893. https://doi.org/10.1073/pnas.1525639113.
Romerio A, Peri F. Rising the chemical number of small-molecule-based TLR4 modulators: an outline. Entrance Immunol. 2020;11:1210. https://doi.org/10.3389/fimmu.2020.01210.
Chase JJ, Kubey W, Dulek MH, et al. Impact of monophosphoryl lipid A on host resistance to bacterial an infection. Infect Immun. 1986;53:711–2. https://doi.org/10.1128/iai.53.3.711-712.1986.
Hirano T, Kodama S, Kawano T, et al. Monophosphoryl lipid A induced innate immune responses by way of TLR4 to boost clearance of nontypeable Haemophilus influenzae and Moraxella catarrhalis from the nasopharynx in mice. FEMS Immunol Med Microbiol. 2011;63:407–17. https://doi.org/10.1111/j.1574-695X.2011.00866.x.
Debrie AS, Mielcarek N, Lecher S, et al. Early safety towards pertussis induced by stay attenuated Bordetella pertussis BPZE1 is determined by TLR4. J Immunol. 2019;203:3293–300. https://doi.org/10.4049/jimmunol.1901102.
Barochia A, Solomon S, Cui X, et al. Eritoran tetrasodium (E5564) remedy for sepsis: evaluation of preclinical and scientific research. Knowledgeable Opin Drug Metab Toxicol. 2011;7:479–94. https://doi.org/10.1517/17425255.2011.558190.
Opal SM, Laterre PF, Francois B, et al. Impact of eritoran, an antagonist of MD2-TLR4, on mortality in sufferers with extreme sepsis: the ACCESS randomized trial. JAMA. 2013;309:1154–62. https://doi.org/10.1001/jama.2013.2194.
Rice TW, Wheeler AP, Bernard GR, et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the remedy of extreme sepsis. Crit Care Med. 2010;38:1685–94. https://doi.org/10.1097/CCM.0b013e3181e7c5c9.
Zhang R, Meng J, Lian Q, et al. Prescription opioids are related to larger mortality in sufferers identified with sepsis: a retrospective cohort research utilizing digital well being data. PLoS ONE. 2018;13: e0190362. https://doi.org/10.1371/journal.pone.0190362.
Didierlaurent AM, Morel S, Lockman L, et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response resulting in enhanced adaptive immunity. J Immunol. 2009;183:6186–97. https://doi.org/10.4049/jimmunol.0901474.
Zhang Z, Louboutin JP, Weiner DJ, et al. Human airway epithelial cells sense Pseudomonas aeruginosa an infection by way of recognition of flagellin by Toll-like receptor 5. Infect Immun. 2005;73:7151–60. https://doi.org/10.1128/iai.73.11.7151-7160.2005.
Thakur BK, Dasgupta N, Ta A, et al. Physiological TLR5 expression within the gut is regulated by differential DNA binding of Sp1/Sp3 by simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two completely different PKC isoforms. Nucleic Acids Res. 2016;44:5658–72. https://doi.org/10.1093/nar/gkw189.
Matarazzo L, Casilag F, Porte R, et al. Therapeutic synergy between antibiotics and pulmonary toll-like receptor 5 stimulation in antibiotic-sensitive or -resistant pneumonia. Entrance Immunol. 2019;10:723. https://doi.org/10.3389/fimmu.2019.00723.
Treanor JJ, Taylor DN, Tussey L, et al. Security and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in wholesome younger adults. Vaccine. 2010;28:8268–74. https://doi.org/10.1016/j.vaccine.2010.10.009.
Hajam IA, Dar PA, Shahnawaz I, et al. Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med. 2017;49: e373. https://doi.org/10.1038/emm.2017.172.
Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21:317–37. https://doi.org/10.1093/intimm/dxp017.
Sartorius R, Trovato M, Manco R, et al. Exploiting viral sensing mediated by Toll-like receptors to design modern vaccines. NPJ Vaccines. 2021;6:127. https://doi.org/10.1038/s41541-021-00391-8.
Li D, Wu M. Sample recognition receptors in well being and ailments. Sign Transduct Goal Ther. 2021;6:291. https://doi.org/10.1038/s41392-021-00687-0.
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–73. https://doi.org/10.1128/cmr.00046-08.
Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr. 2016;4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016.
Xagorari A, Chlichlia Ok. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J. 2008;2:49–59. https://doi.org/10.2174/1874285800802010049.
Singh H, Koury J, Kaul M. Innate immune sensing of viruses and its penalties for the central nervous system. Viruses. 2021;13(2):170. https://doi.org/10.3390/v13020170.
West JA, Gregory SM, Damania B. Toll-like receptor sensing of human herpesvirus an infection. Entrance Cell Infect Microbiol. 2012;2:122. https://doi.org/10.3389/fcimb.2012.00122.
Zhang SY, Herman M, Ciancanelli MJ, et al. TLR3 immunity to an infection in mice and people. Curr Opin Immunol. 2013;25:19–33. https://doi.org/10.1016/j.coi.2012.11.001.
Kunzmann V, Kretzschmar E, Herrmann T, et al. Polyinosinic-polycytidylic acid-mediated stimulation of human gammadelta T cells by way of CD11c dendritic cell-derived kind I interferons. Immunology. 2004;112:369–77. https://doi.org/10.1111/j.1365-2567.2004.01908.x.
Sabbaghi A, Malek M, Abdolahi S, et al. A formulated poly (I:C)/CCL21 as an efficient mucosal adjuvant for gamma-irradiated influenza vaccine. Virol J. 2021;18:201. https://doi.org/10.1186/s12985-021-01672-3.
Wang Z, Zhao Y, Wang Q, et al. Identification of proteasome and caspase inhibitors focusing on SARS-CoV-2 M(professional). Sign Transduct Goal Ther. 2021;6:214. https://doi.org/10.1038/s41392-021-00639-8.
Levast B, Awate S, Babiuk L, et al. Vaccine potentiation by mixture adjuvants. Vaccines (Basel). 2014;2:297–322. https://doi.org/10.3390/vaccines2020297.
Rhea EM, Logsdon AF, Hansen KM, et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci. 2021;24:368–78. https://doi.org/10.1038/s41593-020-00771-8.
Lester SN, Li Ok. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426:1246–64. https://doi.org/10.1016/j.jmb.2013.11.024.
Colak E, Leslie A, Zausmer Ok, et al. RNA and imidazoquinolines are sensed by distinct TLR7/8 ectodomain websites leading to functionally disparate signaling occasions. J Immunol. 2014;192:5963–73. https://doi.org/10.4049/jimmunol.1303058.
Kawasaki T, Kawai T. Discrimination between self and non-self-nucleic acids by the innate immune system. Int Rev Cell Mol Biol. 2019;344:1–30. https://doi.org/10.1016/bs.ircmb.2018.08.004.
Puri N. A research on the usage of imiquimod for the remedy of genital molluscum contagiosum and genital warts in feminine sufferers. Indian J Intercourse Transm Dis AIDS. 2009;30:84–8. https://doi.org/10.4103/0253-7184.62763.
Zhang L, Wang W, Wang S. Impact of vaccine administration modality on immunogenicity and efficacy. Knowledgeable Rev Vaccines. 2015;14:1509–23. https://doi.org/10.1586/14760584.2015.1081067.
Boivin N, Menasria R, Piret J, et al. Modulation of TLR9 response in a mouse mannequin of herpes simplex virus encephalitis. Antiviral Res. 2012;96:414–21. https://doi.org/10.1016/j.antiviral.2012.09.022.
Aillot L, Bonnin M, Ait-Goughoulte M, et al. Interplay between toll-like receptor 9-CpG oligodeoxynucleotides and hepatitis b virus virions results in entry inhibition in hepatocytes and discount of alpha interferon manufacturing by plasmacytoid dendritic cells. Antimicrob Brokers Chemother. 2018;62(4):e01741–17. https://doi.org/10.1128/aac.01741-17.
Krieg AM. Antiinfective functions of toll-like receptor 9 agonists. Proc Am Thorac Soc. 2007;4:289–94. https://doi.org/10.1513/pats.200701-021AW.
Wang Y, Abel Ok, Lantz Ok, et al. The Toll-like receptor 7 (TLR7) agonist, imiquimod, and the TLR9 agonist, CpG ODN, induce antiviral cytokines and chemokines however don’t stop vaginal transmission of simian immunodeficiency virus when utilized intravaginally to rhesus macaques. J Virol. 2005;79:14355–70. https://doi.org/10.1128/jvi.79.22.14355-14370.2005.
Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Knowledgeable Rev Vaccines. 2011;10:499–511. https://doi.org/10.1586/erv.10.174.
Nanishi E, Borriello F, O’Meara TR, et al. An aluminum hydroxide:CpG adjuvant enhances safety elicited by a SARS-CoV-2 receptor binding area vaccine in aged mice. Sci Transl Med. 2022;14(629):eabj5305. https://doi.org/10.1126/scitranslmed.abj5305.
Scheiermann J, Klinman DM. Scientific analysis of CpG oligonucleotides as adjuvants for vaccines focusing on infectious ailments and most cancers. Vaccine. 2014;32:6377–89. https://doi.org/10.1016/j.vaccine.2014.06.065.
Heim VJ, Stafford CA, Nachbur U. NOD signaling and cell loss of life. Entrance Cell Dev Biol. 2019;7:208. https://doi.org/10.3389/fcell.2019.00208.
Land WG. The function of damage-associated molecular patterns (DAMPs) in human ailments: half II: DAMPs as diagnostics, prognostics and therapeutics in scientific medication. Sultan Qaboos Univ Med J. 2015;15:e157-170.
Bajwa E, Pointer CB, Klegeris A. The function of mitochondrial damage-associated molecular patterns in power neuroinflammation. Mediators Inflamm. 2019;2019:4050796. https://doi.org/10.1155/2019/4050796.
Franchi L, Warner N, Viani Ok, et al. Perform of Nod-like receptors in microbial recognition and host protection. Immunol Rev. 2009;227:106–28. https://doi.org/10.1111/j.1600-065X.2008.00734.x.
Zhong Y, Kinio A, Saleh M. Capabilities of NOD-like receptors in human ailments. Entrance Immunol. 2013;4:333. https://doi.org/10.3389/fimmu.2013.00333.
Dagil YA, Arbatsky NP, Alkhazova BI, et al. The Twin NOD1/NOD2 agonism of muropeptides containing a meso-diaminopimelic acid residue. PLoS ONE. 2016;11: e0160784. https://doi.org/10.1371/journal.pone.0160784.
Caruso R, Warner N, Inohara N, et al. NOD1 and NOD2: signaling, host protection, and inflammatory illness. Immunity. 2014;41:898–908. https://doi.org/10.1016/j.immuni.2014.12.010.
Zhao C, Zhao W. NLRP3 inflammasome-a key participant in antiviral responses. Entrance Immunol. 2020;11:211. https://doi.org/10.3389/fimmu.2020.00211.
Lupfer C, Kanneganti TD. The increasing function of NLRs in antiviral immunity. Immunol Rev. 2013;255:13–24. https://doi.org/10.1111/imr.12089.
Bahr GM. Non-specific immunotherapy of HIV-1 an infection: potential use of the artificial immunodulator murabutide. J Antimicrob Chemother. 2003;51:5–8. https://doi.org/10.1093/jac/dkg063.
Moreira LO, Zamboni DS. NOD1 and NOD2 signaling in an infection and irritation. Entrance Immunol. 2012;3:328. https://doi.org/10.3389/fimmu.2012.00328.
Ma Y, Li X, Pei Y, et al. Identification of benzofused five-membered sultams, potent twin NOD1/NOD2 antagonists in vitro and in vivo. Eur J Med Chem. 2020;204: 112575. https://doi.org/10.1016/j.ejmech.2020.112575.
Wang S, Yang J, Li X, et al. Discovery of 1,4-Benzodiazepine-2,5-dione (BZD) derivatives as twin nucleotide binding oligomerization area containing 1/2 (NOD1/NOD2) antagonists sensitizing paclitaxel (PTX) to suppress lewis lung carcinoma (LLC) development in vivo. J Med Chem. 2017;60:5162–92. https://doi.org/10.1021/acs.jmedchem.7b00608.
Ahn J, Barber GN. STING signaling and host protection towards microbial an infection. Exp Mol Med. 2019;51:1–10. https://doi.org/10.1038/s12276-019-0333-0.
Wan D, Jiang W, Hao J. Analysis advances in how the cGAS-STING pathway controls the mobile inflammatory response. Entrance Immunol. 2020;11:615. https://doi.org/10.3389/fimmu.2020.00615.
Barber GN. STING: an infection, irritation and most cancers. Nat Rev Immunol. 2015;15:760–70. https://doi.org/10.1038/nri3921.
Basukala O, Banks L. The not-so-good, the dangerous and the ugly: HPV E5, E6 and E7 oncoproteins within the orchestration of carcinogenesis. Viruses. 2021;13(10):1892. https://doi.org/10.3390/v13101892.
Su C, Zheng C. Herpes simplex virus 1 abrogates the cGAS/STING-mediated cytosolic DNA-sensing pathway by way of its virion host shutoff protein, UL41. J Virol. 2017. https://doi.org/10.1128/jvi.02414-16.
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, kind I interferon-dependent innate immunity. Nature. 2009;461:788–92. https://doi.org/10.1038/nature08476.
Cerón S, North BJ, Taylor SA, et al. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice towards herpes simplex virus-induced neurological illness. Virology. 2019;529:23–8. https://doi.org/10.1016/j.virol.2019.01.006.
Guo F, Han Y, Zhao X, et al. STING agonists induce an innate antiviral immune response towards hepatitis B virus. Antimicrob Brokers Chemother. 2015;59:1273–81. https://doi.org/10.1128/AAC.04321-14.
Humphries F, Shmuel-Galia L, Jiang Z, et al. A diamidobenzimidazole STING agonist protects towards SARS-CoV-2 an infection. Sci Immunol. 2021;6(59):eabi9002. https://doi.org/10.1126/sciimmunol.abi9002.
Zhu Q, Zhang Y, Wang L, et al. Inhibition of coronavirus an infection by an artificial STING agonist in main human airway system. Antiviral Res. 2021;187:105015. https://doi.org/10.1016/j.antiviral.2021.105015.
Easton DM, Nijnik A, Mayer ML, et al. Potential of immunomodulatory host protection peptides as novel anti-infectives. Developments Biotechnol. 2009;27:582–90. https://doi.org/10.1016/j.tibtech.2009.07.004.
van Harten RM, Veldhuizen EJA, Haagsman HP, et al. The cathelicidin CATH-2 effectively neutralizes LPS- and E. coli-induced activation of porcine bone marrow derived macrophages. Vet Immunol Immunopathol. 2022;244:110369. https://doi.org/10.1016/j.vetimm.2021.110369.
Pfalzgraff A, Brandenburg Ok, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial pores and skin infections and wounds. Entrance Pharmacol. 2018;9:281. https://doi.org/10.3389/fphar.2018.00281.
van Groenendael R, Beunders R, Hofland J, et al. The security, tolerability, and results on the systemic inflammatory response and renal operate of the human chorionic gonadotropin hormone-derivative ea-230 following on-pump cardiac surgical procedure (The EASI Examine): protocol for a randomized, double-blind, placebo-controlled section 2 research. JMIR Res Protoc. 2019;8: e11441. https://doi.org/10.2196/11441.
van Groenendael R, Beunders R, Hemelaar P, et al. Security and efficacy of human chorionic gonadotropin hormone-derivative EA-230 in cardiac surgical procedure sufferers: a randomized double-blind placebo-controlled research. Crit Care Med. 2021;49:790–803. https://doi.org/10.1097/ccm.0000000000004847.
Ulm H, Wilmes M, Shai Y, et al. Antimicrobial host defensins—particular antibiotic actions and innate protection modulation. Entrance Immunol. 2012;3:249. https://doi.org/10.3389/fimmu.2012.00249.
Wuerth KC, Falsafi R, Hancock REW. Artificial host protection peptide IDR-1002 reduces irritation in Pseudomonas aeruginosa lung an infection. PLoS ONE. 2017;12: e0187565. https://doi.org/10.1371/journal.pone.0187565.
Rivas-Santiago B, Castañeda-Delgado JE, Rivas Santiago CE, et al. Capability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to guard towards mycobacterium tuberculosis infections in animal fashions. PLoS ONE. 2013;8: e59119. https://doi.org/10.1371/journal.pone.0059119.
Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological being pregnant. Entrance Immunol. 2019;10:792. https://doi.org/10.3389/fimmu.2019.00792.
Arora S, Dev Ok, Agarwal B, et al. Macrophages: their function, activation and polarization in pulmonary ailments. Immunobiology. 2018;223:383–96. https://doi.org/10.1016/j.imbio.2017.11.001.
Murray PJ, Wynn TA. Protecting and pathogenic features of macrophage subsets. Nat Rev Immunol. 2011;11:723–37. https://doi.org/10.1038/nri3073.
Fournier B, Philpott DJ. Recognition of Staphylococcus aureus by the innate immune system. Clin Microbiol Rev. 2005;18:521–40. https://doi.org/10.1128/cmr.18.3.521-540.2005.
Mantovani A, Sica A, Sozzani S, et al. The chemokine system in numerous types of macrophage activation and polarization. Developments Immunol. 2004;25:677–86. https://doi.org/10.1016/j.it.2004.09.015.
Dorrington MG, Fraser IDC. NF-κB signaling in macrophages: dynamics, crosstalk, and sign integration. Entrance Immunol. 2019;10:705. https://doi.org/10.3389/fimmu.2019.00705.
Atri C, Guerfali FZ, Laouini D. Position of human macrophage polarization in irritation throughout infectious ailments. Int J Mol Sci. 2018;19(6):1801. https://doi.org/10.3390/ijms19061801.
Yang Z, Grinchuk V, City JF Jr, et al. Macrophages as IL-25/IL-33-responsive cells play an necessary function within the induction of kind 2 immunity. PLoS ONE. 2013;8: e59441. https://doi.org/10.1371/journal.pone.0059441.
Poltavets AS, Vishnyakova PA, Elchaninov AV, et al. Macrophage modification methods for environment friendly cell remedy. Cells. 2020. https://doi.org/10.3390/cells9061535.
Ross EA, Devitt A, Johnson JR. Macrophages: the nice, the dangerous, and the gluttony. Entrance Immunol. 2021;12: 708186. https://doi.org/10.3389/fimmu.2021.708186.
Li H, Jiang T, Li MQ, et al. Transcriptional regulation of macrophages polarization by microRNAs. Entrance Immunol. 2018;9:1175. https://doi.org/10.3389/fimmu.2018.01175.
Duan Z, Luo Y. Concentrating on macrophages in most cancers immunotherapy. Sign Transduct Goal Ther. 2021;6:127. https://doi.org/10.1038/s41392-021-00506-6.
Wang Y, Smith W, Hao D, et al. M1 and M2 macrophage polarization and probably therapeutic naturally occurring compounds. Int Immunopharmacol. 2019;70:459–66. https://doi.org/10.1016/j.intimp.2019.02.050.
Zhu W, Xu R, Du J, et al. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw. FASEB J. 2019;33:5208–19. https://doi.org/10.1096/fj.201801791RR.
Gao S, Zhou J, Liu N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol. 2015;85:131–9. https://doi.org/10.1016/j.yjmcc.2015.04.025.
Zhou Y, Zhang T, Wang X, et al. Curcumin modulates macrophage polarization by the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cell Physiol Biochem. 2015;36:631–41. https://doi.org/10.1159/000430126.
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and functions. Nanoscale Res Lett. 2013;8:102. https://doi.org/10.1186/1556-276x-8-102.
Sur S, Fries AC, Kinzler KW, et al. Distant loading of preencapsulated medicine into stealth liposomes. Proc Natl Acad Sci. 2014;111:2283. https://doi.org/10.1073/pnas.1324135111.
Bozzuto G, Molinari A. Liposomes as nanomedical units. Int J Nanomedicine. 2015;10:975–99. https://doi.org/10.2147/ijn.S68861.
Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug supply. Entrance Pharmacol. 2015;6:286. https://doi.org/10.3389/fphar.2015.00286.
Nisini R, Poerio N, Mariotti S, et al. The multirole of liposomes in remedy and prevention of infectious ailments. Entrance Immunol. 2018;9:155. https://doi.org/10.3389/fimmu.2018.00155.
Tenchov R, Fowl R, Curtze AE, et al. Lipid nanoparticles-from liposomes to mRNA vaccine supply, a panorama of analysis variety and development. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c04996.
Wan Z, Zhao L, Lu F, et al. Mononuclear phagocyte system blockade improves therapeutic exosome supply to the myocardium. Theranostics. 2020;10:218–30. https://doi.org/10.7150/thno.38198.
Immordino ML, Dosio F, Cattel L. Stealth liposomes: evaluation of the fundamental science, rationale, and scientific functions, present and potential. Int J Nanomed. 2006;1:297–315.
Fobian SF, Cheng Z, Ten Hagen TLM. Sensible lipid-based nanosystems for therapeutic immune induction towards cancers: views and outlooks. Pharmaceutics. 2021;14(1):26. https://doi.org/10.3390/pharmaceutics14010026.
Navya PN, Kaphle A, Srinivas SP, et al. Present traits and challenges in most cancers administration and remedy utilizing designer nanomaterials. Nano Converg. 2019;6:23. https://doi.org/10.1186/s40580-019-0193-2.
Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20:101–24. https://doi.org/10.1038/s41573-020-0090-8.
Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted supply for extremely potent medicine. Artif Cells Nanomed Biotechnol. 2017;45:1478–89. https://doi.org/10.1080/21691401.2017.1290647.
Senzer N, Nemunaitis J, Nemunaitis D, et al. Section I research of a systemically delivered p53 nanoparticle in superior strong tumors. Mol Ther. 2013;21:1096–103. https://doi.org/10.1038/mt.2013.32.
Mamot C, Ritschard R, Vogel B, et al. A section I research of doxorubicin-loaded anti-EGFR immunoliposomes in sufferers with superior strong tumors. J Clin Oncol. 2011;29:3029–3029. https://doi.org/10.1200/jco.2011.29.15_suppl.3029.
Gargett T, Abbas MN, Rolan P, et al. Section I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Most cancers Immunol Immunother. 2018;67:1461–72. https://doi.org/10.1007/s00262-018-2207-z.
Munster P, Krop IE, LoRusso P, et al. Security and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in sufferers with superior HER2-positive breast most cancers: a section 1 dose-escalation research. Br J Most cancers. 2018;119:1086–93. https://doi.org/10.1038/s41416-018-0235-2.
Siefker-Radtke A, Zhang X-Q, Guo CC, et al. A section l research of a tumor-targeted systemic nanodelivery system, SGT-94, in genitourinary cancers. Mol Ther. 2016;24:1484–91. https://doi.org/10.1038/mt.2016.118.
Jayant RD, Tiwari S, Atluri V, et al. Multifunctional nanotherapeutics for the remedy of neuroAIDS in drug abusers. Sci Rep. 2018;8:12991. https://doi.org/10.1038/s41598-018-31285-w.
Meng N, Grimm D. Membrane-destabilizing ionizable phospholipids: Novel elements for organ-selective mRNA supply and CRISPR-Cas gene enhancing. Sign Transduct Goal Ther. 2021;6:206. https://doi.org/10.1038/s41392-021-00642-z.
Yonezawa S, Koide H, Asai T. Latest advances in siRNA supply mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;154–155:64–78. https://doi.org/10.1016/j.addr.2020.07.022.
Maugeri M, Nawaz M, Papadimitriou A, et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to different cells. Nat Commun. 2019;10:4333. https://doi.org/10.1038/s41467-019-12275-6.
Juliano RL. The supply of therapeutic oligonucleotides. Nucleic Acids Res. 2016;44:6518–48. https://doi.org/10.1093/nar/gkw236.
Guevara ML, Persano F, Persano S. Advances in lipid nanoparticles for mRNA-based most cancers immunotherapy. Entrance Chem. 2020;8: 589959. https://doi.org/10.3389/fchem.2020.589959.
Kraft JC, McConnachie LA, Koehn J, et al. Mechanism-based pharmacokinetic (MBPK) fashions describe the advanced plasma kinetics of three antiretrovirals delivered by a long-acting anti-HIV drug mixture nanoparticle formulation. J Management Launch. 2018;275:229–41. https://doi.org/10.1016/j.jconrel.2018.02.003.
Reichmuth AM, Oberli MA, Jaklenec A, et al. mRNA vaccine supply utilizing lipid nanoparticles. Ther Deliv. 2016;7:319–34. https://doi.org/10.4155/tde-2016-0006.
Hanafy NAN, El-Kemary M, Leporatti S. Micelles construction improvement as a method to enhance good most cancers remedy. Cancers (Basel). 2018;10(7):238. https://doi.org/10.3390/cancers10070238.
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug supply techniques in most cancers remedy: what is out there and what’s but to come back. Pharmacol Rev. 2016;68:701–87. https://doi.org/10.1124/pr.115.012070.
Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug supply system in regular pores and skin and dermatological problems. J Adv Pharm Technol Res. 2018;9:2–8. https://doi.org/10.4103/japtr.JAPTR_314_17.
Banerjee A, Onyuksel H. Peptide supply utilizing phospholipid micelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(5):562–74.
Esparza Ok, Jayawardena D, Onyuksel H. Phospholipid micelles for peptide drug supply. Strategies Mol Biol. 2019;2000:43–57.
Din FU, Aman W, Ullah I, et al. Efficient use of nanocarriers as drug supply techniques for the remedy of chosen tumors. Int J Nanomedicine. 2017;12:7291–309. https://doi.org/10.2147/ijn.S146315.
Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug supply: From structural frameworks to latest preclinical research. J Management Launch. 2017;248:96–116. https://doi.org/10.1016/j.jconrel.2017.01.012.
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for supply of medication and siRNA. Entrance Pharmacol. 2014;5:77. https://doi.org/10.3389/fphar.2014.00077.
Yu C, Gao C, Lü S, et al. Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug launch. Colloids Surf B. 2014;115:331–9. https://doi.org/10.1016/j.colsurfb.2013.12.023.
Lee SH, Mok H Fau – Lee Y, Lee Y Fau – Park TG, et al. Self-assembled siRNA-PLGA conjugate micelles for gene silencing. J Management Launch. 2011;152(1):152–8.
Menon S, Thekkayil R, Varghese S, et al. Photoresponsive gentle supplies: Synthesis and photophysical research of a stilbene-based diblock copolymer. J Polym Sci Half A Polym Chem. 2011;49:5063–73. https://doi.org/10.1002/pola.24973.
Kumar S, Allard J-F, Morris D, et al. Close to-infrared gentle delicate polypeptide block copolymer micelles for drug supply. J Mater Chem. 2012;22:7252–7. https://doi.org/10.1039/C2JM16380B.
Husseini GA, Velluto D, Kherbeck L, Pitt WG, et al. Investigating the acoustic launch of doxorubicin from focused micelles. Colloids Surf B Biointerfaces. 2013;101:153–5.
Glover AL, Bennett JB, Pritchett JS, et al. Magnetic heating of iron oxide nanoparticles and magnetic micelles for most cancers remedy. IEEE Trans Magn. 2013;49:231–5. https://doi.org/10.1109/TMAG.2012.2222359.
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: manufacturing, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.
Zhao D, Yu S, Solar B, et al. Biomedical functions of chitosan and its spinoff nanoparticles. Polymers (Basel). 2018;10(4):462.
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: manufacturing, characterization, toxicology and ecotoxicology. Molecules (Basel, Switzerland). 2020;25:3731. https://doi.org/10.3390/molecules25163731.
Herdiana Y, Wathoni N, Shamsuddin S, et al. Drug launch research of the chitosan-based nanoparticles. Heliyon. 2022;8: e08674. https://doi.org/10.1016/j.heliyon.2021.e08674.
Anselmo AC, Mitragotri S. An outline of scientific and business affect of drug supply techniques. J Management Launch. 2014;190:15–28. https://doi.org/10.1016/j.jconrel.2014.03.053.
Naqvi S, Panghal A, Flora SJS. Nanotechnology: a promising strategy for supply of neuroprotective medicine. Entrance Neurosci. 2020;14:494. https://doi.org/10.3389/fnins.2020.00494.
Wang Y. FDA’s regulatory science program for generic PLA/PLGA-based drug merchandise. Am Pharmaceut Rev 2016, 20.
Pandey R, Zahoor A, Sharma S, et al. Nanoparticle encapsulated antitubercular medicine as a possible oral drug supply system towards murine tuberculosis. Tuberculosis. 2003;83:373–8. https://doi.org/10.1016/j.tube.2003.07.001.
Pandey R, Sharma A, Zahoor A, et al. Poly (dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug supply system for experimental tuberculosis. J Antimicrob Chemother. 2003;52:981–6. https://doi.org/10.1093/jac/dkg477.
Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for remedy of tuberculosis. J Antimicrob Chemother. 2004;54:761–6. https://doi.org/10.1093/jac/dkh411.
Silva MM, Calado R, Marto J, et al. Chitosan nanoparticles as a mucoadhesive drug supply system for ocular administration. Mar Medication. 2017;15:370. https://doi.org/10.3390/md15120370.
Ameeduzzafar ISS, Abbas Bukhari SN, et al. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular supply: In-vitro characterization, ocular tolerance and antibacterial exercise. Int J Biol Macromol. 2018;108:650–9. https://doi.org/10.1016/j.ijbiomac.2017.11.170.
Charelli LE, de Mattos GC, de Jesus S-B, et al. Polymeric nanoparticles as therapeutic brokers towards coronavirus illness. J Nanopart Res. 2022;24:12. https://doi.org/10.1007/s11051-022-05396-5.
Feng N, Guo F. Nanoparticle-siRNA: a possible technique for rheumatoid arthritis remedy? J Management Launch. 2020;325:380–93. https://doi.org/10.1016/j.jconrel.2020.07.006.
Wang Z, Hu T, Liang R, et al. Software of zero-dimensional nanomaterials in biosensing. Entrance Chem. 2020;8:320. https://doi.org/10.3389/fchem.2020.00320.
Watermann A, Brieger J. Mesoporous silica nanoparticles as drug supply autos in most cancers. Nanomaterials (Basel). 2017;7:189. https://doi.org/10.3390/nano7070189.
Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial brokers. Molecules. 2015;20:8856–74. https://doi.org/10.3390/molecules20058856.
Zharkova MS, Golubeva OY, Orlov DS, et al. Silver nanoparticles functionalized with antimicrobial polypeptides: advantages and attainable pitfalls of a novel anti-infective device. Entrance Microbiol. 2021;12: 750556. https://doi.org/10.3389/fmicb.2021.750556.
Eleraky NE, Allam A, Hassan SB, et al. Nanomedicine combat towards antibacterial resistance: an outline of the latest pharmaceutical improvements. Pharmaceutics. 2020;12(2):142. https://doi.org/10.3390/pharmaceutics12020142.
Pal I, Bhattacharyya D, Kar RK, et al. A peptide-nanoparticle system with improved efficacy towards multidrug resistant micro organism. Sci Rep. 2019;9:4485. https://doi.org/10.1038/s41598-019-41005-7.
Moyano DF, Liu Y, Ayaz F, et al. Immunomodulatory results of coated gold nanoparticles in LPS-stimulated in vitro and in vivo murine mannequin techniques. Chem. 2016;1(2):320–327.
Ali A, Zafar H, Zia M, et al. Synthesis, characterization, functions, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67. https://doi.org/10.2147/NSA.S99986.
Gupta AK, Curtis ASG. Floor modified superparamagnetic nanoparticles for drug supply: Interplay research with human fibroblasts in tradition. J Mater Sci Mater Med. 2004;15:493–6. https://doi.org/10.1023/B:JMSM.0000021126.32934.20.
Cobaleda-Siles M, Henriksen-Lacey M, de Angulo AR, et al. An iron oxide nanocarrier for dsRNA to focus on lymph nodes and strongly activate cells of the immune system. Small. 2014;10:5054–67. https://doi.org/10.1002/smll.201401353.
Ruiz-de-Angulo A, Zabaleta A, Gómez-Vallejo V, et al. Microdosed lipid-coated 67Ga-magnetite enhances antigen-specific immunity by picture tracked supply of antigen and CpG to lymph nodes. ACS Nano. 2016;10:1602–18. https://doi.org/10.1021/acsnano.5b07253.
Mittal P, Saharan A, Verma R, et al. Dendrimers: a brand new race of pharmaceutical nanocarriers. Biomed Res Int. 2021;2021:8844030. https://doi.org/10.1155/2021/8844030.
Patra JK, Das G, Fraceto LF, et al. Nano based mostly drug supply techniques: latest developments and future prospects. J Nanobiotechnology. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.
Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties toxicity and biomedical functions. Supplies (Basel). 2019. https://doi.org/10.3390/ma13010065.
Liu P, Gao C, Chen H, et al. Receptor-mediated focused drug supply techniques for remedy of inflammatory bowel illness: Alternatives and rising methods. Acta Pharm Sin B. 2021;11:2798–818. https://doi.org/10.1016/j.apsb.2020.11.003.
Gajbhiye V, Ganesh N, Barve J, et al. Synthesis, characterization and focusing on potential of zidovudine loaded sialic acid conjugated-mannosylated poly(propyleneimine) dendrimers. Eur J Pharm Sci. 2013;48:668–79. https://doi.org/10.1016/j.ejps.2012.12.027.
Pan J, Attia SA, Filipczak N, et al. Dendrimers for drug supply functions. In: Nanoengineered Biomaterials for Superior Drug Supply. Mozafari M ed., Elsevier; 2020: 201–242. https://doi.org/10.1016/B978-0-08-102985-5.00010-3
Nabavizadeh F, Fanaei H, Imani A, et al. Analysis of Nanocarrier Focused Drug Supply of Capecitabine-PAMAM Dendrimer Complicated in a Mice Colorectal Most cancers Mannequin. Acta Med Iran. 2016;54(8):485–493.
Khan OF, Zaia Ew, Yin H, Yin H, Bogorad RL, et al. Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA supply to the liver endothelium in vivo. Angew Chem Int Ed Engl. 2014;53(52):14397–401.
Ayatollahi S, Hashemi M, Oskuee RK, et al. Synthesis of environment friendly gene supply techniques by grafting pegylated alkylcarboxylate chains to PAMAM dendrimers: Analysis of transfection effectivity and cytotoxicity in cancerous and mesenchymal stem cells. J Biomater Appl. 2015;30(5):632–48.
Arima H, Yoshimatsu A, Ikeda H, Ikeda H, Ohyama A, et al. Folate-PEG-appended dendrimer conjugate with α-cyclodextrin as a novel most cancers cell-selective siRNA supply provider. Mol Pharm. 2012;9(9):2591–604.
Lee CC, Gillies ER, Fox ME, Fox Me, Guillaudeu SJ, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA. 2006;103(45):16649–54.
Khandare JJ, Jayant S, Singh A, et al. Dendrimer versus linear conjugate: affect of polymeric structure on the supply and anticancer impact of paclitaxel. Bioconjug Chem. 2006;17:1464–72. https://doi.org/10.1021/bc060240p.
Singha S, Shao Ok, Ellestad KK, et al. Nanoparticles for immune stimulation towards an infection, most cancers, and autoimmunity. ACS Nano. 2018;12:10621–35. https://doi.org/10.1021/acsnano.8b05950.
Petkar KC, Patil SM, Chavhan SAO, et al. An outline of nanocarrier-based adjuvants for vaccine supply. LID. 2021. https://doi.org/10.3390/pharmaceutics13040455.
Chauhan GA-O, Madou MJ, Kalra SA-O, et al. Nanotechnology for COVID-19: therapeutics and vaccine analysis. ACS Nano. 2020;14,7760–7782.
Liu G, Zhu M, Zhao X, et al. Nanotechnology-empowered vaccine supply for enhancing CD8(+) T cells-mediated mobile immunity. Adv Drug Deliv Rev. 2021;176:113889.
Briolay T, Petithomme T, Fouet M, et al. Supply of most cancers therapies by artificial and bio-inspired nanovectors. Mol Most cancers. 2021;20:55. https://doi.org/10.1186/s12943-021-01346-2.
Senapati S, Mahanta AK, Kumar S, et al. Managed drug supply autos for most cancers remedy and their efficiency. Sign Transduct Goal Ther. 2018;3:7. https://doi.org/10.1038/s41392-017-0004-3.
Dockrell DH, Kinghorn GR. Imiquimod and resiquimod as novel immunomodulators. J Antimicrob Chemother. 2001;48:751–5. https://doi.org/10.1093/jac/48.6.751.
Duong AD, Sharma S, Peine KJ, et al. Electrospray encapsulation of toll-like receptor agonist resiquimod in polymer microparticles for the remedy of visceral leishmaniasis. Mol Pharm. 2013;10:1045–55. https://doi.org/10.1021/mp3005098.
Peine KJ, Gupta G, Brackman DJ, et al. Liposomal resiquimod for the remedy of Leishmania donovani an infection. J Antimicrob Chemother. 2014;69:168–75. https://doi.org/10.1093/jac/dkt320.
Contreras ET, Olea-Popelka F, Wheat W, et al. Analysis of liposome toll-like receptor ligand complexes for non-specific mucosal immunoprotection from feline herpesvirus-1 an infection. J Vet Intern Med. 2019;33:831–7. https://doi.org/10.1111/jvim.15427.
Wheat W, Chow L, Rozo V, et al. Non-specific safety from respiratory tract infections in cattle generated by intranasal administration of an innate immune stimulant. PLoS ONE. 2020;15: e0235422. https://doi.org/10.1371/journal.pone.0235422.
Wheat W, Chow L, Coy J, et al. Activation of higher respiratory tract mucosal innate immune responses in cats by liposomal toll-like receptor ligand complexes delivered topically. J Vet Intern Med. 2019;33:838–45. https://doi.org/10.1111/jvim.15426.
Wheat W, Chow L, Kuzmik A, et al. Native immune and microbiological responses to mucosal administration of a Liposome-TLR agonist immunotherapeutic in canine. BMC Vet Res. 2019;15:330. https://doi.org/10.1186/s12917-019-2073-8.
Islam D, Lombardini E, Ruamsap N, et al. Controlling the cytokine storm in extreme bacterial diarrhoea with an oral Toll-like receptor 4 antagonist. Immunology. 2016;147:178–89. https://doi.org/10.1111/imm.12549.
Feng N, Liang L, Fan M, et al. Treating autoimmune inflammatory ailments with an siern1-nanoprodrug that mediates macrophage polarization and blocks toll-like receptor signaling. ACS Nano. 2021;15:15874–91. https://doi.org/10.1021/acsnano.1c03726.
Casey LM, Kakade S, Decker JT, et al. Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. Biomaterials. 2019;218: 119333. https://doi.org/10.1016/j.biomaterials.2019.119333.
Bal SM, Hortensius S, Ding Z, et al. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes impacts the standard of the immune response in mice after intradermal vaccination. Vaccine. 2011;29:1045–52. https://doi.org/10.1016/j.vaccine.2010.11.061.
Bal SM, Slütter B, Verheul R, et al. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: Adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci. 2012;45:475–81. https://doi.org/10.1016/j.ejps.2011.10.003.
Kasturi SP, Skountzou I, Albrecht RA, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470:543–7. https://doi.org/10.1038/nature09737.
Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021;21:195–7. https://doi.org/10.1038/s41577-021-00526-x.
Dowling DJ, Scott EA, Scheid A, et al. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating results of the stay BCG vaccine and improve neonatal innate and adaptive immune responses. J Allergy Clin Immunol. 2017;140:1339–50. https://doi.org/10.1016/j.jaci.2016.12.985.
Pavot V, Rochereau N, Primard C, et al. Encapsulation of Nod1 and Nod2 receptor ligands into poly(lactic acid) nanoparticles potentiates their immune properties. J Management Launch. 2013;167:60–7. https://doi.org/10.1016/j.jconrel.2013.01.015.
Cabaña-Brunod M, Herrera PA, Márquez-Miranda V, et al. Growth of a PHBV nanoparticle as a peptide car for NOD1 activation. Drug Deliv. 2021;28:1020–30. https://doi.org/10.1080/10717544.2021.1923862.
Tukhvatulin A, Dzharullaeva A, Erokhova A, et al. Adjuvantation of an influenza hemagglutinin antigen with TLR4 and NOD2 agonists encapsulated in Poly(D, L-Lactide-Co-Glycolide) nanoparticles enhances immunogenicity and safety towards deadly influenza virus an infection in mice. Vaccines. 2020. 8(3):519. https://doi.org/10.3390/vaccines8030519.
Su T, Zhang Y, Valerie Ok, et al. STING activation in most cancers immunotherapy. Theranostics. 2019;9:7759–71. https://doi.org/10.7150/thno.37574.
Fu Y, Xiong S. Tagged extracellular vesicles with the RBD of the viral spike protein for supply of antiviral brokers towards SARS-COV-2 an infection. J Management Launch. 2021;335:584–95. https://doi.org/10.1016/j.jconrel.2021.05.049.
Aroh C, Wang Z, Dobbs N, et al. Innate immune activation by cGMP-AMP nanoparticles results in potent and long-acting antiretroviral response towards HIV-1. J Immunol. 2017;199:3840–8. https://doi.org/10.4049/jimmunol.1700972.
Hanson MC, Crespo MP, Abraham W, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Make investments. 2015;125:2532–46. https://doi.org/10.1172/jci79915.
Wang J, Li P, Yu Y, et al. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020. https://doi.org/10.1126/science.aau0810.
Huan Y, Kong Q, Mou H, et al. Antimicrobial peptides: classification, design, software and analysis progress in a number of fields. Entrance Microbiol. 2020;11: 582779. https://doi.org/10.3389/fmicb.2020.582779.
Kindrachuk J, Jenssen H, Elliott M, et al. Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory. Innate Immun. 2013;19:315–27. https://doi.org/10.1177/1753425912461456.
Benech RO, Kheadr EE, Lacroix C, et al. Antibacterial actions of nisin Z encapsulated in liposomes or produced in situ by combined tradition throughout cheddar cheese ripening. Appl Environ Microbiol. 2002;68(11):5607–5619. https://doi-org/10.1128/AEM.68.11.5607-5619.2002.
Wang J, Shao W, Niu H, et al. Immunomodulatory results of colistin on macrophages in rats by activating the p38/mapk pathway. Entrance Pharmacol. 2019;10:729. https://doi.org/10.3389/fphar.2019.00729.
Alipour M, Halwani M, Omri A, et al. Antimicrobial effectiveness of liposomal polymyxin B towards resistant Gram-negative bacterial strains. Int J Pharm. 2008;355:293–8. https://doi.org/10.1016/j.ijpharm.2007.11.035.
Ron-Doitch S, Sawodny B, Kühbacher A, et al. Decreased cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D dermis mannequin towards HSV. J Management Launch. 2016;229:163–71. https://doi.org/10.1016/j.jconrel.2016.03.025.
Yu J, Dai Y, Fu Y, et al. Cathelicidin antimicrobial peptides suppress EV71 an infection by way of regulating antiviral response and inhibiting viral binding. Antiviral Res. 2021;187: 105021. https://doi.org/10.1016/j.antiviral.2021.105021.
Zhang R, Wu F, Wu L, et al. Novel self-assembled micelles based mostly on cholesterol-modified antimicrobial peptide (DP7) for protected and efficient systemic administration in animal fashions of bacterial an infection. Antimicrob Brokers Chemother. 2018. 62(11):e00368–18. https://doi.org/10.1128/aac.00368-18.
Casciaro B, Moros M, Rivera-Fernández S, et al. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1–21)NH(2) as a dependable technique for antipseudomonal medicine. Acta Biomater. 2017;47:170–81. https://doi.org/10.1016/j.actbio.2016.09.041.
Payne JN, Waghwani HK, Connor MG, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial exercise. Entrance Microbiol. 2016;7:607. https://doi.org/10.3389/fmicb.2016.00607.
Bhat KU, Vidya SM. Nisin gold nanoparticles assemble as potent antimicrobial agent towards Enterococcus faecalis and Staphylococcus aureus scientific isolates. J Drug Deliv Sci Technol. 2017;37:20–7. https://doi.org/10.1016/j.jddst.2016.11.002.
Fang F, Li G, Jing M, et al. C646 modulates inflammatory response and antibacterial exercise of macrophage. Int Immunopharmacol. 2019;74: 105736. https://doi.org/10.1016/j.intimp.2019.105736.
Ye J, Yang Y, Dong W, et al. Drug-free mannosylated liposomes inhibit tumor development by selling the polarization of tumor-associated macrophages. Int J Nanomed. 2019;14:3203–20. https://doi.org/10.2147/IJN.S207589.
Barros D, Costa Lima SA, Cordeiro-da-Silva A. Floor functionalization of polymeric nanospheres modulates macrophage activation: relevance in Leishmaniasis remedy. Nanomedicine. 2015;10:387–403. https://doi.org/10.2217/nnm.14.116.
Tukulula M, Hayeshi R, Fonteh P, et al. Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant exercise and drug supply capabilities. Pharm Res. 2015;32:2713–26. https://doi.org/10.1007/s11095-015-1655-9.
Chavez-Santoscoy AV, Roychoudhury R, Pohl NLB, et al. Tailoring the immune response by focusing on C-type lectin receptors on alveolar macrophages utilizing “pathogen-like” amphiphilic polyanhydride nanoparticles. Biomaterials. 2012;33:4762–72. https://doi.org/10.1016/j.biomaterials.2012.03.027.
Truong N, Black SK, Shaw J, et al. Microfluidic-generated immunomodulatory nanoparticles and formulation-dependent results on lipopolysaccharide-induced macrophage irritation. AAPS J. 2021;24(1):6.
Chaubey P, Patel RR, Mishra B. Growth and optimization of curcumin-loaded mannosylated chitosan nanoparticles utilizing response floor methodology within the remedy of visceral leishmaniasis. Knowledgeable Opin Drug Deliv. 2014;11:1163–81. https://doi.org/10.1517/17425247.2014.917076.
Chandrupatla DMSH, Molthoff CFM, Lammertsma AA, et al. The folate receptor β as a macrophage-mediated imaging and therapeutic goal in rheumatoid arthritis. Drug Deliv Transl Res. 2019;9:366–78. https://doi.org/10.1007/s13346-018-0589-2.
Wusiman A, Xu S, Ni H, et al. Immunomodulatory results of Alhagi honey polysaccharides encapsulated into PLGA nanoparticles. Carbohyd Polym. 2019;211:217–26. https://doi.org/10.1016/j.carbpol.2019.01.102.
Wusiman A, He J, Zhu T, et al. Macrophage immunomodulatory exercise of the cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharide. Int J Biol Macromol. 2019;134:730–9. https://doi.org/10.1016/j.ijbiomac.2019.05.038.
Hou M, Wei Y, Zhao Z, et al. Immuno-engineered nanodecoys for the multi-target anti-inflammatory remedy of autoimmune ailments. Adv Mater. 2022;34: e2108817. https://doi.org/10.1002/adma.202108817.
Wusiman A, Gu P, Liu Z, et al. Cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharides as a vaccine supply system for ovalbumin to enhance immune responses. Int J Nanomed. 2019;14:3221–34. https://doi.org/10.2147/IJN.S203072.
Wusiman A, Jiang W, Yu L, et al. Cationic polymer-modified Alhagi honey polysaccharide PLGA nanoparticles as an adjuvant to induce sturdy and long-lasting immune responses. Int J Biol Macromol. 2021;177:370–82. https://doi.org/10.1016/j.ijbiomac.2021.02.130.
Pan Y, Qi Y, Shao N, et al. Amino-Modified Polymer Nanoparticles as Adjuvants to Activate the Complement System and to Enhance Vaccine Efficacy in Vivo. Biomacromolecules. 2019;20:3575–3583. https://doi.org/10.1021/acs.biomac.9b00887.
Li R, Zhang P, Wang Y, et al. Itaconate: a metabolite regulates irritation response and oxidative stress. Oxid Med Cell Longev. 2020;2020:5404780. https://doi.org/10.1155/2020/5404780.
Davenport Huyer L, Mandla S, Wang Y, et al. Macrophage immunomodulation by new polymers that recapitulate practical results of itaconate as an influence home of innate immunity. Adv Func Mater. 2021;31:2003341. https://doi.org/10.1002/adfm.202003341.