Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and information storage on a single chip. Nature 547, 74–78 (2017).
Kunert, B. et al. Methods to management defect formation in monolithic III/V hetero-epitaxy on (100) Si? A vital overview on present approaches. Semicond. Sci. Technol. 33, 093002 (2018).
Kum, H. et al. Epitaxial development and layer-transfer methods for heterogeneous integration of supplies for digital and photonic units. Nat. Electron. 2, 439–450 (2019).
Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).
Li, Q. & Lau, Okay. M. Epitaxial development of extremely mismatched III-V supplies on (001) silicon for electronics and optoelectronics. Prog. Cryst. Progress Charact. Mater. 63, 105–120 (2017).
Yoon, J. et al. GaAs photovoltaics and optoelectronics utilizing releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).
Raj, V. et al. Layer switch by managed spalling. J. Phys. D: Appl. Phys. 46, 152002 (2013).
Jain, N. et al. III–V photo voltaic cells grown on unpolished and reusable spalled Ge substrates. IEEE J. Photovolt. 8, 1384–1389 (2018).
Yablonovitch, E., Gmitter, T., Harbison, J. P. & Bhat, R. Excessive selectivity within the raise‐off of epitaxial GaAs movies. Appl. Phys. Lett. 51, 2222 (1987).
Cheng, C. W. et al. Epitaxial lift-off course of for gallium arsenide substrate reuse and versatile electronics. Nat. Commun. 4, 1577 (2013).
Wong, W. S., Sands, T. & Cheung, N. W. Harm-free separation of GaN skinny movies from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).
Kim, Y. et al. Distant epitaxy by graphene allows two-dimensional material-based layer switch. Nature 544, 340–343 (2017).
Shim, J. et al. Managed crack propagation for atomic precision dealing with of wafer-scale two-dimensional supplies. Science 362, 665–670 (2018).
Kim, J. et al. Precept of direct van der Waals epitaxy of single-crystalline movies on epitaxial graphene. Nat. Commun. 5, 4836 (2014).
Kong, W. et al. Polarity governs atomic interplay by two-dimensional supplies. Nat. Mater. 17, 999–1004 (2018).
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
Qiao, Okay. et al. Graphene buffer layer on SiC as a launch layer for high-quality freestanding semiconductor membranes. Nano Lett. 21, 4013–4020 (2021).
Kim, H. et al. Affect of 2D–3D heterointerface on distant epitaxial interplay by graphene. ACS Nano 15, 10587–10596 (2021).
Kazi, Z. I., Thilakan, P., Egawa, T., Umeno, M. & Jimbo, T. Realization of GaAs/AlGaAs lasers on Si substrates utilizing epitaxial lateral overgrowth by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 40, 4903–4906 (2001).
Suo, Z. & Hutchinson, J. W. Regular-state cracking in brittle substrates beneath adherent movies. Int. J. Solids Struct. 25, 1337–1353 (1989).
Lee, J. H. et al. Wafer-scale development of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).
Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. Van der Waals bonding in layered compounds from superior density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012).
Faucher, J., Masuda, T. & Lee, M. L. Initiation methods for simultaneous management of antiphase domains and stacking faults in GaAs photo voltaic cells on Ge. J. Vac. Sci. Technol. B 34, 041203 (2016).
Rio Calvo, M. et al. Crystal part management throughout epitaxial hybridization of III-V semiconductors with silicon. Adv. Electron. Mater. 8, 2100777 (2022).
Zhong, L. et al. Proof of spontaneous formation of steps on silicon (100). Phys. Rev. B 54, R2304 (1996).
Bae, S. H. et al. Graphene-assisted spontaneous rest in direction of dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).
Jiang, J. et al. Provider lifetime enhancement in halide perovskite by way of distant epitaxy. Nat. Commun. 10, 4145 (2019).
Asai, H. & Ando, S. Lateral development technique of GaAs over tungsten gratings by metalorganic chemical vapor deposition. J. Electrochem. Soc. 132, 2445–2453 (1985).
Hsu, C.-W., Chen, Y.-F. & Su, Y.-Okay. Nanoepitaxy of InAs on geometric patterned Si (001). ECS J. Strong State Sci. Technol. 1, P140–P143 (2012).
Zaima, Okay., Hashimoto, R., Ezaki, M., Nishioka, M. & Arakawa, Y. Dislocation discount of GaSb on GaAs by metalorganic chemical vapor deposition with epitaxial lateral overgrowth. J. Cryst. Progress 310, 4843–4845 (2008).
Kunert, B. et al. Examine of planar defect filtering in InP grown on Si by epitaxial lateral overgrowth. Choose. Mater. Specific 3, 1960–1973 (2013).
Ironside, D. J., Skipper, A. M., García, A. M. & Financial institution, S. R. Assessment of lateral epitaxial overgrowth of buried dielectric buildings for electronics and photonics. Prog. Quantum Electron. 77, 100316 (2021).
McMahon, W. E., Vaisman, M., Zimmerman, J. D., Tamboli, A. C. & Warren, E. L. Perspective: fundamentals of coalescence-related dislocations, utilized to selective-area development and different epitaxial movies. APL Mater. 6, 120903 (2018).
Kim, H. et al. Position of transferred graphene on atomic interplay of GaAs for distant epitaxy. J. Appl. Phys. 130, 174901 (2021).
Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and pressure fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).
Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
Zhang, Y., Huang, L. & Shi, Y. Silica glass toughened by consolidation of glassy nanoparticles. Nano Lett. 19, 5222–5228 (2019).
Ethier, S. & Lewis, L. J. Epitaxial development of Si1−xGex on Si(100)2 × 1: a molecular-dynamics examine. J. Mater. Res. 7, 2817–2827 (1992).
Bourque, A. J. & Rutledge, G. C. Empirical potential for molecular simulation of graphene nanoplatelets. J. Chem. Phys. 148, 144709 (2018).
Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511 (1998).
Stukowski, A. Visualization and evaluation of atomistic simulation information with OVITO—the open visualization instrument. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2009).